Modeling of small-scale non-Gaussian Galactic foregrounds

arXiv:1906.10052 Kevin M. Huffenberger (FSU) also Aditya Rotti (Manchester) David C. Collins (FSU)

Dust power spectrum properties

 $C_l^{BB} \propto l^{-2.42}$ $C_l^{BB} / C_l^{EE} = 0.5$ $r^{TE} = 0.36$ $r^{TB} = 0.05$

Planck 2016, 2018

MHD sims show non-Gaussianity

... but many sky models are Gaussian on small scales. Kritsuk, Flauger

et al 2017

David Collins, Kye Stalpes (FSU)

Can we gain insight with simpler models?

Fibers in neutral hydrogen

Clark+ 2014

Filament orientation correlates to Planck dust polarization

HI-pol. model with r > 0.75 HI Planck 353 GHz

If the foreground was all filaments, what properties reproduce the power spectra?

What are implications for lensing, other statistics?

I don't have the answer yet.

Polarization of magnetized filament

Rotti & Huffenberger

Green's Function pol→EB

Polarized Filament

	T		Q		U		E		B	
$\psi_{ m pol}=90.0^\circ$			-		ł	-				
$\psi_{ m pol}=112.5^\circ$			7		7	<u>/</u>				
$\psi_{ m pol}=135.0^\circ$			×	/	×	(
$\psi_{ m pol} = 157.5^{\circ}$			ナ	1	7					
$\psi_{ m pol}=180.0^\circ$				_	-1	_				

Filament (halo) model

Huffenberger, Rotti, Collins 2019 arXiv:1906.10052

$$\begin{split} C_{\ell}^{EE} &= \frac{1}{2\pi} \int d\phi_{\ell} \int d\alpha \ n(\alpha) \ |E(\ell, \alpha)|^{2}, \\ C_{\ell}^{BB} &= \frac{1}{2\pi} \int d\phi_{\ell} \int d\alpha \ n(\alpha) \ |B(\ell, \alpha)|^{2}, \\ C_{\ell}^{TE} &= \frac{1}{2\pi} \int d\phi_{\ell} \int d\alpha \ n(\alpha) \ T(\ell, \alpha) E(\ell, \alpha)^{*} \end{split}$$

integrate over population of filaments

Slope scaling relation

$$C_{\ell} = \int d\alpha_0 \ n(\alpha_0) \alpha_0^q F(\alpha_0^r \ell)$$
$$n(\alpha_0) \propto \alpha_0^p$$

$$C_\ell \propto \ell^{-(p+q+1)/r}$$

For the size of filament:

- q = 6 (solid angle, column density)
- r = I (trigonometry)

$C_{l} \propto l^{-2.42}$ implies $n(L) \propto L^{-4.58}$

 $\epsilon = 0.255$, RMS(θ_{LH}) = 50 °

- Filaments in all orientations
 - Column density
 - Polarization fraction
- Magnetic field angular separation (Gaussian)

TB correlation?

Not naturally...

Favor counterclockwise twists of filament relative to magnetic field.

55-45 vs. 50-50

Lensing bias

Lensing pow. spectrum: 4-point func. of T,E,B

Can compute <TEEB>,<TBTB>, etc. and weight appropriately...

Dependence on profile? Filament 2-pt correlations?

Easier to generate realizations of filaments? (see "Sky Modeling," parallel 4)

Conclusions

Filament models provides intuition about the possible non-gaussian structure of pol. foregrounds.

Concrete relationships exist between power spectrum observables and the filament population.

4-pt measures can quantify foreground bias to lensing. (Also look for FG residuals.)