More results from the Atacama Cosmology Telescope

Kevin Huffenberger Department of Physics, University of Miami

Use CMB to study foreground objects

Large Scale Structure Clusters of Galaxies

Figure 24-23 Universe, Eighth Edition © 2008 W. H. Freeman and Company

large scale distribution of galaxies

Cosmological matter simulation

z = 2.97 Universe 2.2 billion years old

z = 0.99 Universe 6.0 billion years old

z = 0.00 Universe 13.7 billion years old

Structure formation \rightarrow expansion history \rightarrow dark energy

How gravitational lensing happens

Figure 24-30a Universe, Eighth Edition © 2008 W. H. Freeman and Company

Lensing

All of these blue arcs are images of the same distant galaxy.

Figure 24-31 Universe, Eighth Edition © 2008 W.H. Freeman and Company

СМВ

(Hu & Okamoto 2001)

CMB lensed

(Hu & Okamoto 2001)

CMB lensing mass reconstruction

Integrated density

Using CMB T (Hu & Okamoto 2001)

ACT CMB-lensing results

Sunyaev-Zeldovich effect

SZ distorts CMB blackbody

ACT identified galaxy clusters

ACT identified galaxy clusters

Exceptional galaxy cluster "El Gordo"

Highest T, Most massive at z>0.6

How rare is such a cluster?

See also: Gonzalez et al (2012) M₂₀₀ ~ 3 x 10¹⁴ @ z=1.75

Cluster properties

Seghal et al (2012), Hand et al (2012), Sifon et al (2011) Skewness: Wilson et al (2012)

New camera with improved detectors. Deployment 2012.

Temperature noise better by $\sim 4x$ \rightarrow improved SZ sensitivity

Small angular scale CMB polarization

Niemack et al (2010) arXiv 1006.5049

Polarization in Thomson Scattering

Polarization in Thomson Scattering

Polarization in Thomson Scattering

Perturbations generating quadrupoles

Types of polarization patterns

Power spectrum

ACTPol Sensitivity

Substantial improvement on E-mode power spectrum

Detect & Measure lensing B-modes

Niemack et al (2010)

CMB lensing mass reconstruction

(Hu & Okamoto 2001)

Conclusions

- With lensing, ACT probes the large scale structure, and gives additional evidence for Dark Energy.
- With SZ, ACT is finding massive clusters at high redshift.
- ACTPol will measure polarization, opening up new avenues to pursue fundamental physics.

Backup material for questions

Cosmic Budget

Expanding universe & the Big Bang

Expansion history/future

... based on Einstein's model for gravity.

Expansion history/future

... based on Einstein's model for gravity.

Type Ia SN indicate expansion is accelerating

Scale of the universe relative to today

Thermal history of the Universe

Hot, dense objects glow with a specific spectrum

Technical term: "Blackbody radiation"

Big Bang's afterglow

Dense, hot initial state

Each resulted in a Nobel prize!

Relic Background Radiation

redshifted to microwaves.

Cold: 3 K above abs. zero

The spectrum of the cosmic microwave background

Figure 26-7b Universe, Eighth Edition © 2008 W. H. Freeman and Company

info on grav. potential @ recombination

Forces on an overdensity

Ground / balloon based telescopes

Atacama Cosmology Telescope

QUiet telescope

U

Boomerang

South Pole Telescope

Next generation satellite mission.

All-sky, compared to WMAP: Wider frequency coverage. Lower noise. **Higher resolution.**

ESA/NASA mission, large collaboration. Launched: May 14, 2009 Data releases: 2011-2013.

Better polarization sensitivity.

Planck's first full-sky image

Cosmology results early 2013 http://irsa.ipac.caltech.edu/

Power spectrum

Study two-point correlation function in harmonic space

 $a_{lm} = \int d\Omega T(\theta, \phi) Y_{lm}^*(\theta, \phi)$ $\langle a_{lm} a_{l'm'}^* \rangle = C_l \delta_{ll'} \delta_{mm'}$

measurements for cosmology.

Universe's contents

3 components cosmologically relevant:

I. baryons, atoms, "normal matter".

2. cold dark matter, normal gravity, no pressure, no interactions.

3. dark "energy", $\Lambda = Lambda$, anti-gravity, cosmological constant, acceleration.

Measuring Universe's contents

General Relativity: Einstein's theory of gravity

Field equations:

Gravity = curvature of spacetime.

Gravity = curvature of spacetime.

MAP990006

Measuring curvature

CMB surface

Viewing fixed sized object through curved spacetimes.

Bullet cluster model

A model of how the gas and dark matter in 1E0657-56 could have become separated

Figure 24-32b Universe, Eighth Edition © 2008 W. H. Freeman and Company

ACT measurement of AS0592

AGT-GL J0638-5358, z=0.222 (AS0592)

Menanteau et al. (2010) MOSAIC/Blanco [-346 K,-749K]