# Fluctuation Analysis of Point Sources in CMB Maps

#### **Kevin M. Huffenberger**



AAS Seattle, 12 Jan 2011

# CMB maps are contaminated by emission from distant galaxies (AGN or DSFG).





Mask as many as practical.

Faint / unresolved population remains.



# Unresolved sources usually measured by multi-freq. power spectrum & SED.

Is harmonic space the best tool?

# Signal is spatially compact & non-Gaussian.

#### Examine real space PDF.



Fluctuation or P(D) analysis common in sub-mm & radio, where sources can be highly confused.

Compute PDF of a source pop. from beam shape and source counts.

Build likelihood to measure sources from pixel histogram.

#### First, remove the CMB

#### difference map = b<sub>V</sub> \* Q - bQ \* V = noise + sources



5 '/pix, 180x180 pix

on (128,-14)





#### Noise



## Current status WMAP sim: one-parameter max. like. recovers counts amp. to 3%.



# Next: Marginalize map mean, required for real data.

#### **Future directions**

### Sources in Planck & ACT data (Including clustering)

### Unresolved SZ clusters (Negative sources & multiple profiles)

### PDF of map products? (Address noise uncertainties)

