

Kevin M. Huffenberger, Department of Physics

Milky Way

In what kind of universe do we live?

What are the contents?

What's the space-time like?

What is primordial seed of structure?

Expanding universe & the Big Bang

Expansion history/future

... based on Einstein's model for gravity.

Expansion history/future

... based on Einstein's model for gravity.

Type Ia SN indicate expansion is accelerating

Scale of the universe relative to today

Thermal history of the Universe

Hot, dense objects glow with a specific spectrum

Technical term: "Blackbody radiation"

Big Bang's afterglow

Dense, hot initial state

Each resulted in a Nobel prize!

Relic Background Radiation

redshifted to microwaves.

Cold: 3 K above abs. zero

The spectrum of the cosmic microwave background

Figure 26-7b Universe, Eighth Edition © 2008 W. H. Freeman and Company

info on grav. potential @ recombination

Ground / balloon based telescopes

Atacama Cosmology Telescope

QUiet telescope

U

Boomerang

South Pole Telescope

Next generation satellite mission.

All-sky, compared to WMAP: Wider frequency coverage. Lower noise. **Higher resolution.**

ESA/NASA mission, large collaboration. Launched: May 14, 2009 Data releases: 2011-2013.

Better polarization sensitivity.

Planck's first full-sky image

Cosmology results early 2013 http://irsa.ipac.caltech.edu/

Power spectrum

Study two-point correlation function in harmonic space

 $a_{lm} = \int d\Omega T(\theta, \phi) Y_{lm}^*(\theta, \phi)$ $\langle a_{lm} a_{l'm'}^* \rangle = C_l \delta_{ll'} \delta_{mm'}$

measurements for cosmology.

Universe's contents

3 components cosmologically relevant:

I. baryons, atoms, "normal matter".

2. cold dark matter, normal gravity, no pressure, no interactions.

3. dark "energy", $\Lambda = Lambda$, anti-gravity, cosmological constant, acceleration.

Measuring Universe's contents

General Relativity: Einstein's theory of gravity

Field equations:

Gravity = curvature of spacetime.

Gravity = curvature of spacetime.

MAP990006

Measuring curvature

CMB surface

Viewing fixed sized object through curved spacetimes.

Results:

flat +/- 2%

74% Dark Energy (by energy density)

22% Dark Matter

The CMB can also act as a background to study foreground objects

Gravitational lensing SZ effect

Cosmic web

Figure 24-23 Universe, Eighth Edition © 2008 W.H. Freeman and Company

Cosmic web (2dF survey)

Fields of view in the 2dF survey

Figure 24-24b Universe, Eighth Edition © 2008 W. H. Freeman and Company

Cosmic web (2dF survey)

Figure 24-24a Universe, Eighth Edition © 2008 W. H. Freeman and Company

Cosmological matter simulation

z = 2.97 Universe 2.2 billion years old

z = 0.99 Universe 6.0 billion years old

z = 0.00 Universe 13.7 billion years old

Figure 27-15 Universe, Eighth Edition © 2008 W.H. Freeman and Company

ACT CMBlensing results

Sherwin et al 2011 Das et al 2011

ACT CMB-lensing result

3.2σ evidence for Dark Energy from CMB alone (w/out SN)

Exceptional galaxy cluster "El Gordo"

Highest T, Most massive at z>0.6

Bullet cluster

Composite image of galaxy cluster 1E0657-56 R I V U X G showing visible galaxies, X-ray-emitting gas (red) and dark matter (blue)

Figure 24-32a Universe, Eighth Edition © 2008 W.H. Freeman and Company

How rare is such a cluster?

Conclusions

The Universe is flat, mostly dark energy, with some dark matter, and a small fraction of normal atoms.

But what are dark energy and dark matter?

What is the growth rate of structure over cosmic time?

What's the precise expansion history?

Will polarization of CMB prove inflation?