Measuring Planck beams with planets

Kevin M. Huffenberger UNIVERSITY OF MIAMI

T. Matsumura, B.P. Crill, A.E. Lange, K.M. Gorski, C.R. Lawrence

Planck: all-sky survey at 30 - 857 GHz (1 cm - 350 μm) Launched 14 May 2009 First data release: Early 2011 with source, SZ, cold core catalogs

100/857/IRAS

Better resolution, sensitivity, frequency coverage vs. WMAP

Planck scan strategy

Power spectrum encodes cosmological information

gravity, pressure, photon streaming, etc.

Finite resolution damps small scale power

Planck focal plane

Planets are the brightest objects, compact & wellsuited to probing the beam.

Simulated Jupiter at 100 GHz

Monte Carlo pipeline to probe reconstruction error

simulate signal, noise, electronics, etc.

reconstruct beam

repair spectrum

Huffenberger et al., A&A 510 (2010)

Results: most sensitive bands better than 0.3%

But Planck is very sensitive!

Typical parameter bias $0.1 - 0.6\sigma$

Conclusions

Interesting physics (constraints on inflation) depends on mundane details (beams of the instrument).

Fitting the beam to planet measurements is challenging.

Residuals in beam fitting will probably play a small but still significant role in cosmological parameters' final error budget.