What in heaven's name are Type la supernovae?

Eric Hsiao 蕭亦麒 Florida State University

Outline of the talk

- 1. What we think Type Ia supernovae are today.
- 2. How do we learn more in the future.

Type la supernova

- Classification is based on spectrum near maximum.
- But how was Type Ia first identified?

Type la supernova

White dwarf accretes material from companion star until carbon burning is triggered, just below Chandrasekhar mass.

Is the textbook explanation of Type Ia supernovae correct?

Type la supernova

- <u>Consensus</u> explosion of a C/O WD undergoing thermonuclear runaway.
- Progenitor system single degenerate double degenerate
- Explosion mechanisms
 Chandrasekhar mass, Mch
 He detonation, sub-Mch
 dynamical mergers
 direct collision
 core degenerate

Type la supernova

- There is a tendency in the literature to mix and confuse progenitor system with explosion mechanism.
- Mch != single degenerate Mch != "dirty" surrounding e.g., Dragulin et al. (2016): wind from accretion disk carves out a low-density void several light years across.
- sub-Mch != double degenerate sub-Mch != "clean" surrounding e.g., Shen et al. (2013): H-rich material can be ejected prior to He WD and C/O WD merger.

What is the companion star? What is the explosion mechanism? What is the origin of the observed homogeneity and diversity?

Diversity

- Type la supernovae are <u>not</u> standard candles, but "standardizable candles."
- Width-luminosity relation (or <u>Phillips relation</u>) enables precision cosmology.
- Dimmer supernovae also decline faster.
- <u>Vast majority</u> of la follow this tight empirical relation.

Diversity

- But some la don't follow the rule.
- <u>91bg and 91T-like</u> are spectroscopically distinct, and also sub- and over-luminous.
- <u>lax</u> are low-velocity sub-luminous la with a wide range of peak mag.
- <u>Super-C</u> la are over-luminous, implying ejected mass significantly higher than Mch.

fast LC decline

Diversity

 It is easier (comparatively) to figure out the mechanisms of peculiar events with their extreme properties. In turn, this helps to determine possible mechanisms for the normal population.

Photometric properties

 Dimmer la cannot come from Mch, but must come from sub-Mch channel exclusively.

- One mechanism, Mch, explains all normal la.
- Current interpretations of ^B/₂ the Phillips relation yield ^A/₂ -18 <u>conflicting results</u>!

Photometric properties

- Mch models provide exceptional <u>match to</u> <u>the observations</u>, but <u>only in 1D</u>.
- <u>Sub-Mch models do</u> <u>not</u>.

Mch

1.5

1

0.5

0

0

B-V [mag]

B-V

1D Mch models

13 Eric Hsiao ehsiao@fsu.edu LeCosPA Seminar May, 2018

40

20 23

time [days]

20

HeD10 (0.8CO+0.22He

60

HeD6 (0.6C0+0.22He

Spectroscopic properties

 Dialing the temperature of radiative transport appears to reproduce the observed spectroscopic diversity, <u>including 91T,</u> <u>normal, 91bg</u>.

Nugent et al. (1995)

Primary star

- SN2011fe, a normal la, was discovered hours after its explosion in M101, 6.4 Mpc away.
- Cooling of shock-heated primary or companion depends on radius.
- R < 0.02 Rsun
 <u>Only WD and NS are viable as</u> primary star candidates.

Nugent et al. (2011)

Companion star: shock heating

-26

-25

-24

-23

-21

-20

-19

-18

-17

-16

-14

-13

-12

-11

-20

Absolute Magnitude

MJD 57824 57828

U Absolute Magnitude

-19

-18

-17

-20

-16

Phase (d)

-12

There are now 2 examples of • normal la showing "bumps" in their early light curves, interpreted as shock heated companion.

Companion star: shock heating

 These detections are <u>rare</u>. Most glaring, are all the non-detections from rolling searches.

Hayden et al. (2010)	SDSS-II	No detection	
Bianco et al. (2011)	SNLS	No detection	
Brown et al. (2012)	Swift nearby	No detection	
Zheng et al. (2013)	SN2013dy	No detection	
Yamanaka et al. (2014)	SN2012ht	No detection	
Firth et al. (2015)	PTF/LSQ	No detection	
Olling et al. (2015)	Kepler	No detection	
Shappee et al. (2015)	ASASSN-14lp	No detection	
Cao et al. (2015)	iPTF14atg	R ~ 20 Rsun	
Marion et al. (2015)	SN2012cg	R ~ 10 Rsun	
Hosseinzadeh et al. (2017)	SN2017cbv	R ~ 60 Rsun	

Companion star: pre-explosion

 Pre-explosion images rule out luminous RG and most Hestar as companion for SN2011fe.

Li et al. (2011)

Companion star: pre-explosion

- Pre-explosion images of the site of <u>lax</u> SN2012Z revealed a luminous blue star, believed to be a He star companion.
- No pre-explosion companion has ever been found for normal la.

McCully et al. (2014)

19 Eric Hsiao ehsiao@fsu.edu LeCosPA Seminar May, 2018

Companion star: post-explosion

 The searches of companion star remnant in SNR have turned up none, but ever more stringent limit for the companion (Mv > 8 – 9 mag).

SNR 0509-67.5; Schaefer & Pagnotta (2012)

Companion star: stripped hydrogen

- Hydrogen stripped off non-degenerate companion should be embedded in SN ejecta at low velocity.
- High S/N late time spectra in both optical and NIR have turned up <u>no stripped</u> <u>hydrogen</u> so far.

Circumstellar material

- CSM recombination after photoionization by explosion produces time-varying Na I D.
- There are <u>rare</u>, <u>but definitive</u> <u>examples of time-varying</u> <u>Na I D</u>.

SN2006X; Patat et al. (2007)

Circumstellar material

23

• There are <u>rare</u>, but definitive examples of la-CSM interaction.

Circumstellar material

 Ia show strong preference for blueshifted Na I D structures, indicating gas outflows and CSM.

May, 2018

Sternberg et al. (2011)

24 Eric Hsiao <u>ehsiao@fsu.edu</u> LeCosPA Seminar May, 2018

Host environment

- SN la luminosity depends on host environment.
- Does not post a problem for cosmology if the widthluminosity relation does not evolve with redshift.

Host environment

 Even after light-curve width and color corrections, normal la are 0.08 mag brighter in massive host galaxies.

super-Chandrasekhar

27 Eric Hsiao ehsiao@fsu.edu LeCosPA Seminar May, 2018

	SN1999ax	SN2002bp	SN2002cx	SN2003gg	SN2004cs
	J140357.91+155109.2	J111918.19+204823.1	J131349.71+065731.8	J225320.67+320757.5	J175014.37+141659.5
	SN2005cc	SN2005hk	SN2006hn	SN2007ie	SN2007qd
	J135704.84+415041.7	J002750.87-011152.5	J110718.66+764149.8	J221736.68+003647.9	J020933.56-010002.2
D	SN2008ae	SN2008ha	PTF09ego	PTF09eoi	PTF10xk
	J095603.19+102958.7	J233452.68+181335.3	J172625.15+625822.1	J232412.87+124642.6	J014102.86+301338.6
	PTF11hyh	SN2012Z	PS1-12bwh	SN2013dh	iPTF13an
	J014550.5+143500	J032205.35-152315.5	J070924.28+390615.8	J153001.08+125912.8	J121415.35+153209.5
	SN2014dt	SN2014ek	SN2015H	PS15aic	PS15csd
	J122157.57+042818.5	J235606.54+292242.2	J105442.16-210413.7	J133048.49+380632.4	J020455.43+184816.4
	lav			Jha (2017)	

Where do we go from here?

- Despite major efforts in the optical, there has been few improvements la cosmology and understanding of their origins.
- Being limited by systematics, larger sample won't help.
- There is one way forward...
 <u>go to the NIR</u>!

Why NIR?

- Going to the NIR, we can achieve higher precision in cosmology through 2 routes
 - 1. By avoiding things we do not understand, like dust law and Phillips relation (shortcut).
 - 2. By opening a new window to understand the physics and origin(s) of Type Ia supernovae (more fun).

Why NIR?

- Differences between normal and peculiar la's are subtle in the optical.
- NIR probes deeper in the ejecta and shows drastic differences.

Why NIR?

- Stronger, more isolated lines in the NIR compared to optical.
- NIR probes different depths in the ejecta.
- Brackett, Paschen lines
 constrain level populations.
- 2 strong NIR He I lines.

Carnegie Supernova Project

CSP-I (2004-2008):

- Build the low-redshift anchor for any Hubble diagram in a single, well-understood photometric system.
- CSP-II (2011-2015):
 - Observe Ia in the Hubble flow to eliminate peculiar velocity errors.
 - NIR spectroscopy to improve k-corrections and physics.
- Emphasis in the NIR!

Carnegie Supernova Project

Probing la physics

- Unburned material Premax C I 1.069, He I 1.083 Marion et al. (2006), Hsiao et al. (2013, 2015)
- Boundary between C/O burning Premax Mg II 1.093 Wheeler et al. (1998), Hsiao et al. (2013)
- Radioactive nickel, ionization evolution
 Postmax H-band break
 Wheeler et al. (1998), Hoeflich et al. (2002), Hsiao et al. (2013)
- Stable nickel Transitional phase [Ni II] 1.939 Friesen et al. (2014), Wilk et al. (2018)
- Companion signature Postmax P-beta 1.282 Maeda et al. (2014), Sand et al. (2016), Botyanszki (2017)
- Central density and B-field Nebular phase [Fe II] 1.644 Penney & Hoeflich (2014), Diamond et al. (2015), Diamond et al. (2018)

Unburned material

- Carbon detected in SN is pristine material from exploding white dwarf.
- In sub-Mch mechanism, carbon is not expected to survive due to the surface detonation.

Unburned material

- Recall the conflicting results interpreting the explosion mechanism(s) of normal la.
- Detection of strong carbon in dimmer la contradicts the claim of a sub-Mch population.

Radioactive nickel

- Strength of the break depends on the 56Ni mass; rate at which it is exposed depends on the mass of "shielding" intermediate-mass elements.
- Potential to distinguish between explosion mechanisms.

Stable nickel

 Stable nickel can be produce only under high density condition, which in turn, is a strong indicator of a Mch explosion.

Stable nickel

 With improved NIR spectroscopy, we will have better constraint on this feature.

Archival data

40 Eric Hsiao <u>ehsiao@fsu.edu</u> LeCosPA Seminar May, 2018

Companion signature

 NIR P-beta is a much more sensitive probe than optical H-alpha.

Summary

- Primary star: The exploding star should be a white dwarf.
- Companion star: Except for rare cases, large companion stars are not favored.
- Explosion mechanism: It is unclear whether normal la's come from a single or multiple explosion mechanisms.
- NIR shows promise in providing substantial improvements in la cosmology and physics.

