My incomplete take on Type la supernova observational evidence

Eric Hsiao Florida State University

Type la supernova

"Type la" first
 identified by its
 secondary maximum
 in the NIR.

Type la supernova

 <u>Consensus</u> explosion of a C/O WD undergoing thermonuclear runaway.

Type la supernova

- <u>Consensus</u> explosion of a C/O WD undergoing thermonuclear runaway.
- Progenitor system
 single degenerate
 double degenerate
- Explosion mechanisms
 Chandrasekhar mass, Mch
 He detonation, sub-Mch
 dynamical mergers
 core degenerate
 direct collision

What is the companion star? What is the explosion mechanism? What is the origin of the observed homogeneity and diversity?

Diversity

- Width-luminosity relation (dimmer-faster) enables precision cosmology.
- Majority of la follow this tight relation.
- Dimmer-faster Ia also redder, conspiring to make true standard candles in NIR.

Diversity

- <u>91bg and 91T-like</u> are spectroscopically distinct, and also sub- and over-luminous.
- <u>lax</u> are low-velocity sub-luminous la with a wide range of peak mag.
- <u>Super-C</u> la are over-luminous, implying ejecta mass significantly higher than Mch.

Diversity

 It is easier (comparatively) to figure out the mechanisms of peculiar events with their extreme properties. In turn, this helps to determine possible mechanisms for the normal population.

Photometric properties

1.5

1

0.5

0

Ω

B-V [mag]

B-V

20

Mch models provide • exceptional match to the observed light + color curves and color-mag diagrams for the full range of normal la.

1D Mch models + CSP data

Eric Hsiao ehsiao@fsu.edu Amazing Life of Stars, Cefalú, 2017 10

 Dialing the temperature of radiative transport can reproduce the observed spectroscopic diversity, including 91T, normal, 91bg.

- The differences between normal, lax and super-C are subtle in the optical.
- However, they are drastic in the NIR, suggesting different mechanisms?

12 Eric Hsiao ehsiao@fsu.edu Amazing Life of Stars, Cefalú, 2017

13

- Carbon detected in SN spectra is pristine from the progenitor WD, and is observed to be especially strong in dimmer la.
- Unburned material is not expected to survive in sub-Mch route due to the surface detonation mechanism.

Primary star

- SN2011fe, a normal la, was discovered hours after its explosion in M101, 6.4 Mpc away.
- Cooling of shock-heated primary or companion depends on radius.
- Only WD and NS are viable as primary star candidates.

Companion star: shock heating

 Can rule out luminous RG and most He-star as companion for SN2011fe.

Li et al. (2011)

Companion star: shock heating

 There are now 2 examples of normal la showing "excess" in their early light curves, interpreted as shock heated companion.

Companion star: shock heating

• These detections are rare.

Hayden et al. (2010)	SDSS-II	No detection
Bianco et al. (2011)	SNLS	No detection
Brown et al. (2012)	Swift nearby	No detection
Zheng et al. (2013)	SN2013dy	No detection
Yamanaka et al. (2014)	SN2012ht	No detection
Firth et al. (2015)	PTF/LSQ	No detection
Olling et al. (2015)	Kepler	No detection
Shappee et al. (2015)	ASASSN-14lp	No detection
Cao et al. (2015)	iPTF14atg	R ~ 20 Rsun
Marion et al. (2015)	SN2012cg	R ~ 10 Rsun
Hosseinzadeh et al. (2017)	SN2017cbv	R ~ 60 Rsun

Companion star: pre-explosion

- Pre-explosion images of the site of lax SN2012Z revealed a luminous blue star, believed to be a He star companion.
- No pre-explosion companion has been found for normal la.

19 Eric Hsiao <u>ehsiao@fsu.edu</u> Amazing Life of Stars, Cefalú, 2017

McCully et al. (2014)

Companion star: post-explosion

 The searches of companion star remnant in SNR have turned up none, but ever more stringent limit for the companion (Mv > 8 – 9 mag).

SNR 0509-67.5; Schaefer & Pagnotta (2012)

Companion star: stripped hydrogen

- Hydrogen stripped off non-degenerate companion should be embedded in SN ejecta at low velocity.
- High S/N late time spectra in both optical and NIR have turned up none so far.

- CSM recombination after photoionization by explosion produces time-varying Na I D.
- There are rare, but definitive examples of time-varying Na I D.

SN2006X; Patat et al. (2007)

23

• There are rare, but definitive examples of Ia-CSM interaction.

 Ia show strong preference for blueshifted Na I D structures, indicating gas outflows and CSM.

24 Eric Hsiao <u>ehsiao@fsu.edu</u> Amazing Life of Stars, Cefalú, 2017

Sternberg et al. (2011)

- However, strong correlation between strength of DIB 5780 and la extinction suggests that the main source of dust extinction come from ISM.
 - Excess Na I D gas associated with "blueshifted" objects

Phillips et al. (2013)

Host environment

- SN la luminosity depends on • host environment.
- Does not post a problem for • cosmology if the widthluminosity relation does not evolve with redshift.

00

Irr

Irr

Sc

Sb

Sa

S0

E

 $\Delta m_{15}(B)$ LC decline rate Hamuy et al. (2000)

Eric Hsiao ehsiao@fsu.edu Amazing Life of Stars, Cefalú, 2017 26

Ο

Ο

ത 0

1.5

0 0

0

Ο

0

Host environment

After light-curve width and color corrections,
 normal la are 0.08 mag brighter in massive host galaxies.

super-Chandrasekhar

28 Eric Hsiao ehsiao@fsu.edu Amazing Life of Stars, Cefalú, 2017

lax

Summary

- <u>Normal la</u> have observational properties well described by Chandrasekhar-mass models, but it's 1D and evidence for non-degenerate companion of normal la is rare.
- <u>lax</u> have 1 confirmed non-degenerate companion, and are most likely pure deflagration.
- <u>Super-Chandrasekhar</u> may achieve observed Ni⁵⁶ produced through core degenerate route. (Peter Hoeflich's talk)

29 Eric Hsiao ehsiao@fsu.edu Amazing Life of Stars, Cefalú, 2017

Summary

- <u>Normal la</u> have observational properties well described by Chandrasekhar-mass models, but it's 1D and evidence for non-degenerate companion of normal la is rare.
- <u>lax</u> have 1 confirmed non-degenerate companion, and are most likely pure deflagration.
- <u>Super-Chandrasekhar</u> may achieve observed Ni⁵⁶ produced through core degenerate route. (Peter Hoeflich's talk)
- "Clean" surrounding =? sub-Mch =? double degenerate e.g., Shen et al. (2013): H-rich material can be ejected prior to He WD and C/O WD merger.
- "Dirty" surrounding =? Mch =? single degenerate e.g., Dragulin et al. (2016): wind from accretion disk produces a low-density void several light years across.