Astronomical observations in the infrared

Eric Hsiao Florida State University

Outline

- Infrared radiation
- Infrared astronomy
- The Infrared sky
- Infrared detectors
- Infrared observations

- Discovered by William Herschel in 1800.
- First form of invisible electromagnetic radiation discovered!

- What is the temperature of each color?
- Temperature is the highest at "infra" red.
- But the Sun peaks at yellow.
 What's going on here?

 Fundamental vibrational frequencies for virtually all molecules made up of H, C, N, O are in the infrared.

Allamandola (1984)

NASA/ESA

8

IRAS/COBE

12.

Eric Hsiao, FSU DSC Research Seminar, March, 2016

Water vapor absorption

- H₂O is a main source of atmospheric opacity.
- Varies strongly with temperature.
- Falls off rapidly with altitude.
- The infrared sky is effectively opaque > 26 μ m.

Airglow emission

- Meinel bands, radiated by OH.
- High up in the atmosphere.
- The strength varies with location and time.
- Can be used for wavelength calibration.

Airglow emission

- Meinel bands, radiated by OH.
- High up in the atmosphere.
- The strength varies with location and time.
- Can be used for wavelength calibration.

- Rayleigh scattering of air molecules is negligible in the infrared.
- Aerosols and zodiacal dust scatter in the Mie regime.

Aerosol scattering

- Mie scattering by sea salt, volcanic, and desert aerosols has weak dependence with wavelength.
- Aerosols live high up in the atmosphere.

Zodiacal light

- Come from dust associated with the solar system.
- Two components: scattered light, warm dust emission.

Terrestrial sources

- 273 K blackbody corresponds to 10 µm peak.
- Detectors need to be cooled.
- Support structures and surfaces often coated with gold.

- Optical CCD detectors and infrared detectors are semiconductors.
- Operate on the excitation of electrons from an immobile to a free-moving energy band.
- The bandgap determines the minimum energy required for the incident photons.

				12	ar	e	C			et	E	C			rS		
											ompound niconductors		elemental niconductors		ompound		
1 H Hydrogen										(sem		e Sem		sem)	2 He Helium
3 Li Lithium	4 Be Beryllium											5 B Boron	Carbon	7 N Nitrogen	Oxygen 8	9 F Fluorine	¹⁰ Ne №on
11 Na ^{Sodium}	12 Mg Magneelum											13 Aluminum	14 Si Silicon	Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Ar Argon
19 K Potassium	20 Ca Calcium	21 SC Scandium	22 Ti Titanium	V V Vanadium	Chromium	25 Mn Manganese	Fe Iron	Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn _{Zinc}	31 Ga Gallium	32 Ge Germanium	33 As Arsenic	34 Se Selenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr ^{Zirconium}	41 Nb Niobium	42 Mo Molybdenum	43 TC Technetium	44 Ru Buthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In Indium	50 Sn Tin	51 Sb Antimony	52 Te Tellurium	53 lodine	54 Xe Xenon
55 CS Caesium	56 Ba Barium	57 - 71	72 Hf Hafnium	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 OS Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 TI Thallium	Pb Lead	83 Bi Bi≋muth	84 Po Polonium	Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	89-103	104 Rf Rutherfordium	105 Db Dubnium	106 Sg Seaborgium	107 Bh Bohrium	108 HS Hassium	109 Mt Meitnerium	110 DS Dermetedfium	111 Rg Roentgenium	Copernicium	113 Uut Ununtrium	114 FI Fierovium	115 Uup ^{Ununpentium}	116 LV Livermorium	117 Uus Ununseptium	118 Uuo Ununoctium

- Minimum energy for the bandgap jump translates to a maximum wavelength cutoff.
- Infrared detector materials have smaller bandgap than Si.
- Can tune the bandgap by changing the ratio of Hg/Cd in HgCdTe detectors.
- Smaller bandgaps means larger <u>dark current</u>.

Material	Temperature (K)	Cutoff wavelength (µm)
Si	295	1.11
Ge	295	1.85
InSb	77	5.4
InGaAs	77	2.6
HgCaTe	77	1.2—18
Si:As	5	23
Si:Sb	5	36
Si:Ga	10	17.5
Ge:Ga	10	115

Glass (1999)

- Because readout electronics are Si-based, infrared detectors have largely adopted the two-layer, CMOS architecture.
- Detector layer is connected to the Si readout layer by "indium bumps."

- The readout of CCD for optical light works like "bucket brigade."
- Parallel register shifts a row of charges into the serial register.
- Serial register then transfer charges sequentially to amplifier.
- Repeat.

Photon incidence

Charge generation

Advantages

- No mechanical shutter needed.
- Readout is nondestructive.

Disadvantages

- Pixel-level charge-to-voltage conversion causes higher <u>readout noise</u>.
- Signal accumulates with slight <u>nonlinearity</u>.
- Readout <u>amplifier glows</u> in the infrared.
- Individual signal paths cause pixel-to-pixel <u>bias jumps</u>.
- Discharging trapped electrons and holes is slow which causes <u>persistence</u>.

optical	infrared	_
Bias subtraction		
	Sky subtraction	ging
	Dark subtraction	ima(ction
Flat field division	Flat field division	redu
Spectrum extraction	Spectrum extraction	sopy data
(Telluric correction)	Telluric correction	ctroso
Wavelength calibration	Wavelength calibration	spec

Nodding and dithering

 Remove airglow and thermal emissions by practicing the nodding (spectroscopy) and dithering (imaging) techniques. ABBA sequence "nod along the slit"

A

B

Photometric standards

 To combat variable atmospheric absorptions, photometric standard stars are taken at a range of airmasses.

Telluric standards

- A telluric standard star is taken close in time, airmass and angular distance to the science target.
- A response curve, including the atmosphere and the system response, is constructed by modeling the stellar spectrum.

40

Dark current

- If vibrational energy of particles is larger than the bandgap, dark current flows in absence of light.
- In general, smaller the bandgap, cooler temperature is required to limit dark current.
- Use dark images with the same exposure time as observations.

Conduction

band

Bandgap

Valence

band

Going into space

- Avoid atmospheric absorption and emission.
- Access longer wavelength.
- Cool detector and optics to limit dark current and thermal emission.

To push the readout noise below the Poisson noise, multiple measurements are typically made.

To push the readout noise below the Poisson noise, multiple measurements are typically made.

Amplifier induced anomalies

- Additive.
- "Glow" caused by amplifier temperature.
- "Shading" caused by temperature change across the array.
- "Bias jump" caused by amplifier of another instrument nearby.

Amplifier glow

Hsiao et al. (2010)

Erratic middle column

Hsiao et al. (2010)

Fringing?

- Fringing is common in CCDs, but unheard of in infrared detectors.
- The pattern is usually time and wavelength dependent.

additive F110W / component G F160W / component G

F160W / component

→ wavelength

F110W / component F

Eric Hsiao, FSU DSC Research Seminar, March, 2016

Does not match flat image.

Does not match bright Earth persistence.

- Fringe pattern is in all images and is multiplicative, so persistence is ruled out.
- Mismatches with flats and darks rule out a temperature effect.
- Intensity follows zodiacal light.
- Spatially wide pattern could be produced by a sub-milliradian wedge in the detector layer.

FSU DSC Research Seminar, March, 2016

 Removing these anomalies represents a 20% improvement in photometry.

Hsiao et al. (2010)

Summary

- Environmental challenges
 - Atmospheric absorption
 - Airglow emission
 - Thermal/scattering
- Detector challenges
 - Dark current
 - Readout noise
 - Nonlinearity
 - Amplifier glow
 - Fringing?
 - Bad middle column

- Solutions
 - Photometric, telluric standards
 - Short exptime, nodding, dithering
 - Short exptime, cool detector, space
- Solutions
 - Cool detector, dark images
 - Sampling techniques
 - Nonlinearity correction, hardware
 - Master glow images, hardware
 - Master fringe images
 - Principal component modeling